Incremental learning of action models as HMMs over qualitative trajectory representations

نویسندگان

  • Maximilian Panzner
  • Philipp Cimiano
چکیده

In this paper we present an incremental approach to learning generative models of object manipulation actions as HMMs over qualitative relations between two objects. We compare the incremental approach against a traditional batch training baseline and show that the resulting qualitative action models are capable of one-shot learning after just one seen example while displaying good generalization behavior as more data becomes available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Hidden Markov Models with Distributed State Representations for Domain Adaptation

Recently, a variety of representation learning approaches have been developed in the literature to induce latent generalizable features across two domains. In this paper, we extend the standard hidden Markov models (HMMs) to learn distributed state representations to improve cross-domain prediction performance. We reformulate the HMMs by mapping each discrete hidden state to a distributed repre...

متن کامل

Learning Latent Variable and Predictive Models of Dynamical Systems

A variety of learning problems in robotics, computer vision and other areas of artificial intelligence can be construed as problems of learning statistical models for dynamical systems from sequential observations. Good dynamical system models allow us to represent and predict observations in these systems, which in turn enables applications such as classification, planning, control, simulation...

متن کامل

A Survey of Predictive State Representations

Predictive State Representations (PSRs) [10] are a model for a discrete-time finite action and observation stochastic systems, presented as an alternative to HMMs and POMDPs. A PSR represents the system’s state as a set of predictions of the observable outcomes of tests performed in the system. Unlike hidden variable models no latent variables are assumed or required – only observable outcomes ...

متن کامل

Training Hidden Markov Models using Population-Based Learning

Hidden Markov Models are commonly trained using algorithms derived from gradient-based methods such as the Baum-Welch procedure. We describe a new representation of discrete observation HMMs that permits them to be trained using Population-Based Incremental Learning (PBIL), a variant of genetic learning that combines evolutionary optimization and hill-climbing Baluja and Caruana, 1995]. In this...

متن کامل

Learning Protein Dynamics with Metastable Switching Systems

We introduce a machine learning approach for extracting fine-grained representations of protein evolution from molecular dynamics datasets. Metastable switching linear dynamical systems extend standard switching models with a physically-inspired stability constraint. This constraint enables the learning of nuanced representations of protein dynamics that closely match physical reality. We deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015